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The topological dynamics of the mixmaster models in space-time dimension 
d +  1 are investigated. We use a new parametrization to reduce the mixmaster 
map to a translation combined with an appropriate isometry or a dilating inver- 
sion. For d~< 9, we show that the mixmaster map is ergodic and topologically 
mixing. For d >  10, the mixmaster map reduces to the identity after a finite 
number of iterations, except for a set of initial data with zero Lebesgue measure. 

KEY WORDS: Mixmaster model; ergodic theory; chaos; Einstein equations; 
cosmological singularity; Kaluza-Klein cosmology. 

1. I N T R O D U C T I O N  

Recent efforts to develop a unified theory of fundamental interactions have 
revived interest in gravitational theories in higher space-time dimensions. 
Contrasting with our (3 + 1)-dimensional space-time, one of the basic 
properties of the solutions investigated is that they should be anisotropic, 
to account for the asymmetry between the ordinary three spatial dimen- 
sions and the extra spatial dimensions. A second motivation for considering 
anisotropic space-time models is that they have a high degree of generality 
and may therefore provide insight into fundamental properties of the space- 
time models. We have thus undertaken the analysis ~ of the anisotropic 
solutions of the Einstein equations in (d+ 1) space-time dimensions with 
the methods of topological dynamics. This analysis was prompted by the 
interesting dependence of the qualitative behavior of these cosmological 
models on the number of spatial dimensions, (l~ and the results presented 
here were obtained in collaboration with M. Henneaux. 
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Anisotropic solutions of the Einstein equations can be described in 
terms of the generalized Kasner metric 

d 

d s  2 = - d r  2 + dxJ) 2 (1.1) 
i = 1  

where det(/}) ~ 0; the exponents pi(x) belong to the "Kasner sphere" 

d d 

P~ = Z P ,=  1 (1.2) 
i = 1  i = 1  

and are assumed to be in increasing order 

Pl <<-P2<~ "'" <~Pe (1.3) 

As at least P l is negative, while Pd-1 and Pd are positive, this universe 
model is expanding in at least one direction and contracting in at least two 
directions when it approaches the initial singularity. The time evolution of 
the exponents Pi depends on the matrices (/}(x)); they are constant for the 
homogeneous vacuum Kasner solution (with lji-- 6j). 

One interesting feature of the (3 + 1)-dimensional solution is that the 
metric (1.1) with inhomogeneous (space-dependent) l} behaves qualitatively 
in the same way as the homogeneous solutions (2 7,17-20); for "almost all" 
initial conditions, the exponents p~ remain almost constant over a time 
interval and then suddenly change to values that are given by a single 
rational map. At such a "collision" the dilating and contracting directions 
also exchange their roles. This process of smooth evolution interrupted by 
brief "collisions" repeats indefinitely and becomes more violent as one 
approaches the singularity. The collision map (p~--*p;) possesses strong 
chaotic properties and lends itself to a statistical description/2'3'8'17'18) 

In (d+  1) dimensions (d>~4), various authors have found that the 
anisotropic homogeneous vacuum solutions of the Einstein equations do 
not exhibit similar infinite sequences of oscillations. (~14 16,21) However, the 
presence of small inhomogeneities induces collisions analogous to the 
three-dimensional case: 

p; = Ord(q/) (1.4) 

where the ordering operator Ord, ensuring (1.3), acts on the sequence q: 

ql = (Pl - e)/(1 + c~) 

q i = p ] ( l  +cQ ( 2 ~ < i ~ d - 2 )  

q d - l =  (Pd-1+CO/(1 +~)  

qa = (Pd+ ~)/(1 + =) 

(1.5a) 

(1.5b) 

(1.5c) 

(1.5d) 
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provided that the quantity (denoted e,,a-1.a in Refs. 10-12) 

c~= 1 + P l - P J - I - P d  (1.6) 

is negative. If ~ is positive, then no collision occurs, i.e., 

p;=p~,  l <<.i<~d (1.7) 

and the metric (1.1) smoothly approaches the singularity. This condition, 
c~ >t 0, cannot be satisfied if d ~  9, except at isolated points, but for d >  10 
the condition c~ > 0 does define an open nonempty set in the Kasner sphere 
for which the Kasner regime is stable. Further investigation suggested the 
following conjectures (10,11): 

1. The mixmaster map (1.4)-(1.5) is chaotic for d~<9, as it is for 
d = 3 .  

2. For  d>~ 10, almost any initial condition ultimately reaches the 
Kasner stability region ~ > 0, in which the oscillatory behavior 
ceases. 

It is well known (2"3"8&17"18) that, for d =  3, the map (1.4)-(1.6) is related 
to the continued-fraction transformation of Gauss, which has good ergodic 
properties. In a first step toward a proof of the conjectures, Elskens and 
Henneaux (12) proved that the mixmaster map is topologically mixing for 
d =  4 and introduced a set of variables in which the map decomposes into 
an isometry and a dilatation. The present work relies on this change of 
variables to complete the proof of the two conjectures. 

This paper is organized as follows. In Section 2, we formulate the map 
(1.4)-(1.6) in the new variables. In Section 3, we introduce the basic par- 
tition of the ordered sector of the Kasner sphere and state our theorems; 
the proofs are left for the appendices. Section 4 is devoted to short 
comments. 

2. T H E  M I X M A S T E R  M A P  IN R E D U C E D  V A R I A B L E S  

The Kasner conditions 52~_ ~ p~ = Z,a= 1 Pi = 1 define a ( d -  2)-dimen- 
sional sphere, which is in one-to-one correspondence with the space 
Na-2w {o o}, in which the coordinates (u~), 1 ~< i~< d - 2 ,  are defined as 
follows: 

1. 

. 

Ifpa = 1, then Pi = 0 (i < d) by the Kasner conditions, and we write 
/A ~ -  O O .  

If Pd < 1, then we let 

ui = p J (1  - p ~ )  (2.1) 
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The mapping ( p ; ) ~  (u;) amounts to a stereographic projection of the 
Kasner sphere from the pole (0, 0 ..... 1 ) onto the plane ( xa= 2, ~ =  1 x; = 1). 
As the pole (0 ..... 0, 1) is invariant under the map (1.4)-(1.5) it is harmless 
to reject it at infinity in the new representation. 

If we introduce the additional variables 

ud t -= Pa-  1/(1 - Pa), 

it is easily seen that 
d - 1  

E u i = l  
i=1 

1 J - I  1 2 

t = l  

p~ = uj (1  + ua) 

ua= p J(1  - Pa) (2.2) 

(1 ~< i<~d) 

Finally, we also define the quadratic form 

(2.3) 

and we denote by A its closure A vo {o o}. For d =  3, this construction 
reduces to the parametrization of the Kasner circle S~ given by Belinskii 
eta/.  (6'7) (with their u =  -u l ) .  We endow A with the distance d(u, u'): 

1 ~ 1 2~d__l(p;--p;) 2 
d(u, u')2= ;=, (u,- <)2= i f  (2.6) 

and write d(u, o0)= oe. 
Any point on the Kasner sphere can be brought to the ordering (2.5) 

by permuting some exponents (p;). The corresponding transformations 
of the u; have been discussed in Ref. 12; they are combinations of the 
following transformations: 

1. To permute any of the ( d -  1) first exponents (p~,..., Pa- l ) ,  one 
performs the same permutation on the reduced variables; this 
transformation preserves the distance (2.6) and its eigenvalues 
have unit modulus. 

We call the variables (ui), l~<i~<d, the reduced variables 
corresponding to the exponents (p;). The inequalities Pl ~ "" ~< P~ define a 
subset A of R~-2: 

d - - 2  

ul<<.u2 << . "'" <~ud 2~<1 - ~ ui, f (u)~>l  (~=>ua~>ua_l) (2.5) 
i - = 1  

/ J - 2  \2 
l d - 2  I ~ Z u,)  = u a - - u d _ l  + l (2.4) 

f ( u ) = ~  E u~+~  
i = l  \ i ~ 1  / 
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2. To exchange Pd- 1 and Pd, one performs the inversion with respect 
to the q u a d r i c f ( u ) =  1: 

u ; = u ] f  l < ~ i < ~ d - 2  (2.7) 

so that u} ~= ua/ f  and u}= Ud 1If', this transformation does not 
preserve the distance (2.6), and its eigenvalues are + 1 / f  

Thus, if one defines the exponents (Pi) by placing the exponents (qi) in 
increasing order, two cases occur: 

1. If qa is the largest of all qi, the corresponding transformation for 
the reduced variables is an isometry (a permutation). 

2. If qa is not the largest of all qi, one first orders (ql " ' ' q d -  ~) by an 
isometry; then one performs the inversion (2.7), which is a 
dilatation, since f <  1 for these exponents; and another isometry 
brings the last exponent to its place; the resulting transformation 
has eigenvalues with modulus l / f >  1. 

With these reduced variables, the mapping (1.5) appears as a trans- 
lation parallel to the Ul axis 

T: ~ d -  2 __, ~ -  2: u ~ u ' =  Tu = (u t + 1, ua,..., ua_ 2) (2.8) 

and we define, according to (2.3), 

u' = - 1, ' u, + f ( u )  (2.9) d - - I  H d - - I  Ud~--- 

To be complete, we specify that Too = oo. 
This transformation T does not necessarily preserve the ordering of u. 

t ! ! t 
[ f  IA t > U 2 o r  /'/d 2 ~ Ud- -  1 o r / , / t  a ~ > u~, one needs to perform a permutation 
and/or an inversion to bring Tu into A. These reorderings, which are 
considered in the next section in more detail, are the source of the various 
dynamical behaviors of the mixmaster map. 

R e m o r k .  Our definition (2.8)-(2.9) of the mixmaster map in the 
reduced variables differs from the definition of Section 1 for points such 
that ~ > 0 (where the original map reduces to the identity). This difference 
is motivated by the desire to use the same expression for Tu for any u E A; 
it is harmless because T2A u = u if e > 0. Note that 

(1 + ua) ~ =  l + u ~ - u a _ ~  (2.10) 

3. THE  P A R T I T I O N S  Pa A N D  P~ 

The mixmaster map (1.4)-(1.5) is thus written as T~:A--*A: 
u --* S T u  = x in terms of the reduced variables, where S is the appropriate 
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reordering transformation. The actual form of S depends on the point u 
considered, and the various orderings in which u ' =  Tu may come out 
define a partition Pa of A. For  an arbitrary u eA,  the ordering of u' is 
constrained as follows: 

u'2=u2<~u;<~ -.- <~u' a-R, ua=ul + f(u)>~u'~=ul + 1 

Thus, the complete order of the variables u; is fixed by the positions of u'l, 
u'd ~, and ud' in the sequence; the partition Pd of A may thus be written 

P ~ = { [ i , j , k ] } ,  l<<.i<k<~d, l<~j<~d (3.1) 

with j C k ,  j r  the cell [i,j, k] is 

[i,j, k] = {u~A: p'~ =q~, P'd-~ =qj, P'J=qk} (3.2) 

where (p;) and (qi) are the exponents corresponding to (u;) and (xi), 
respectively. 3 Some cells defined by (3.2) may be empty for some values of 
d (especially if d~< 8) or reduce to isolated points, but this will not alter our 
discussion. As our definition implies that all cells are closed, some points of 
A belong to more than one cell, but they form a set of codimension one (or 
higher) with total measure zero. 

Two regions in A present a major interest: 

1. The inversion region B = int B, where 

= ~) [i, j, k]  (3.3) 
k < d  

is the set of points of A for which the reordering of u ' =  Tu involves the 
dilating inversion (2.7). 

2. The Kasner stability region K = int K, where ~ > 0; it is a subset of 
the extended stability region 

(~ = [ d -  1, 1, d] (3.4) 

on which T2A reduces to the identity. 

The inversion region B is nonempty for all values of d. Both K and (~ 
are empty for d ~ 8  and reduce to a single point {c} for d = 9 ;  for d>~ 10, 
they have a nonempty interior, which plays a fundamental role in the 
dynamics. 

3 We use the exponents instead of the reduced variable because the reordering S is then 
written as a simple permutation. See also Appendix A. 
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In Appendix A, we prove the following result: 

Theo rem 1. For any d>~3 and [i,j, k] ~Pa, either T~[i,j, k] =A 
or T~[i , j , k]=Kor  TA[i,j,k]=G. 

Of course, for d~< 8, only the first case occurs; and for d=9, the first 
case occurs for all cells with a nonzero measure. It was proved in Ref. 12 
that the partition Pd is generating for d~< 9, and that T~ is dilating along 
all directions in B (except near c and its preimage c' by T for d =  9). This 
leads to the following result: 

Theo rem 2. For d~<9, TA is topologically mixing, it has positive 
topological entropy, and it is ergodic. 

The proof is given in Appendix B. 
For d~> 10, the fact that K ~ has a nonempty interior drastically changes 

the dynamics. We show in Appendix C that the same properties hold 
for TA outside G as hold there for d=9.  Moreover, by considering in 
Appendix D an adequate modification of TA (mapping G onto A again), 
we also prove the following result: 

Theo rem 3. If d>~ 10, the set of points that T A maps into K is 
dense in ,4, and its complement has Lebesgue measure zero. 

There is no contradiction between this result and Theorem 1: 
Theorem 1 is concerned with the image of cells by a finite number of 
iterations, whereas Theorems 2 and 3 deal with the asymptotic evolution of 
the points. In fact, Theorem 1 ensures that, tbr any m ~> 0, there is a subset 
U c A  such that T"jU=A even ifd~> 10. 

We have thus completed the proof of the conjectures proposed by 
Oemaret et aL (1~ 

4. C O N C L U D I N G  R E M A R K S  

From the physical viewpoint (see also Ref. 13), these results show that 
the presence of a small spatial inhomogeneity can completely change the 
qualitative behavior of some simple solutions to the Einstein equations. But 
other classes of cosmological models may exhibit completely different 
behaviors. We shall thus confine ourselves to short topical remarks. 

First, the role of the (unstable) fixed points and periodic orbits of the 
map for d~< 9 calls for further study. Eras starting with exponents near the 
pole (0,..., 0, 1 ) may be arbitrarily long: for d = 3, this makes the Liapunov 
exponents and K-entropy of ira vanish. But the return map Ts in the inver- 
sion domain should be genuinely chaotic. Note also that, like ~3T A u/Ou, the 

822/48/5-6-21 
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derivative OTBu/Ou is the product of an isometry and a homothety (with 
ratio ~> 1) and thus has all its Liapunov exponents equal. 

Besides, the application of ergodic theory to a cosmological model 
suggests that a statistical mechanical description of the gravitational field 
may be natural near a singularity for some broad class of space-times; such 
a description would be complementary to the exact solutions (which often 
call on special symmetries) and certainly deserves further attention. 

A P P E N D I X  A 

In this Appendix, we establish the conditions a point x E A must satisfy 
in order to have a preimage u e A within any cell [i, j, k]  of the partition 
Pd; let u ' =  Tu. Let p, p', and q denote the exponents corresponding to u, 
u', and x, respectively, through (2.1) (2.2). As x = TA u, we have 

Pl = (u,-/- 1)/(u I -I-f. + 1 ), 

p} = ut/(u 1 + f . +  1), 

P'a-1 = (ud-1  + 1)/(ul +f~,+ 1), 

pl , ;  (u~ + f~)/(.~ + f . +  1), 

and 

ql = X l / ( X d ~  1) 

q , = x ~ / ( x a +  1) (2~</~<d-2)  

q d -  1 = x d _  1/(Xd "~- 1 ) 

qd = x a / ( x d +  1) (A.1) 

q = Ord(p ' )  

We write f ,  = f ( u )  and fx = f ( x ) .  

(A.2) 

Of course, x e A implies xi <~ " -  ~< xa_ ~ andfx  >~ 1. If x is the image of 
u e [i, j, k]  by T A, then 

t t 

Pl  = q i ,  Pd-1  =qy ,  P ' J = q k  (A.3) 

Introducing 

flk = 1 + x d -  xk >~ 1 (A.4) 

( x l  ..... X a)/flk = Ord(ul,..., u}) (A.5) 

Knowing from (A.3) the actual order of u', we may invert the reordering 
transformation and solve (A.5) for u as a function of x. 

The solutions u so obtained may fall outside the ordered region A: a 
point x need not have preimages by TA in all cells of Pa. We must therefore 
ensure that f ( u ) > / 1  and ul <~ " "  <~ua_l .  The first condition is satisfied 

we recast the system (A.I)-(A.2) in the form 
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provided that p'a>~p'l, i.e., k>~i. The conditions b/2.~< '--~<Ud_ 2 are 
automatically satisfied (see Section2). The only restrictions requiring 
special verification are u~ ~<u2 and u a _ 2 ~ u d _ l ;  in view of (A.1)-(A.3), 
these conditions read: 

1. If i~>2: 

us = ul' - 1 = (xi/l~k) - 1 <~ u2 = us' 

Depending on whether j = l  or j >  1, we have u'2=x2/flk or u'2=Xl/tqk, 
respectively, which yields a necessary and sufficient condition on x. 

2. I f j ~ < d - 2 :  

lad__ 1 = (Xj/J~k) -~ 1 >~ ua_ 2 = u'a_ 2 

and u)_ 2 = xa_ 2//3k or u) 2 = xa_ 1~ilk or u) 2 = xa//?k, depending on the 
values of i and k. 

The resulting conditions are further detailed in Table I. 
The cells [i, j, d] with i > j deserve special attention. We consider first 

the cells [ d - l , j , d ] ,  l < ~ j < ~ d - 2 ,  which are nonempty 4 only for d~>9 
(and reduce to isolated points for d = 9 ) .  If u~ [ d - 1 ,  1, d], then T ~ u E  
[ d - l ,  1, d] and T 2 u = u .  And if u e [ d - l , j , d ]  with 2 ~ j ~ d - 2 ,  then 
x I = u; = u2, so that (for x '  = Tx)  x'a_ ~ = ul <~ u2 <~ x2, while x'l = u2 + 1 i> 
u1 + 1 >~xa_2: thus, x~  [ d -  1, 1, d]. Second, i fu~  [ d - 2 ,  j ,  d] with 1 ~<j~< 
d -  3, then x e [ d -  1, j ' , d] with j '  ~< j, so that T~ u s [ d -  1, 1, d]. Similarly, 
if u e [ d -  3, 2, d], then T2~ u e [ d -  1, 1, d] also. Therefore, in all these 
cases, T] u e [ d -  l, 1, d] for any n/> 2, i.e., the orbit of u is trapped in the 
extended stability region. 

Table I may also be interpreted in analogy with the compatibility 
matrices of topological Markov chains. (~'~2~ For each cell [i, j, k]  of Pa, 
our conditions determine a part of A covered by its image TA[i, j ,  k]; it is 
then easy to find one or more cells of P)  covered by this image. If this 
image reduced exactly to a union of cells of Pa (resp. P)), the partition Pa 
(resp. P)) would be Markovian, but this only occurs for d =  3 and d =  4. 
Note that Table I does not define a "compatibility" matrix for Pa (since 
some cells are mapped onto R rather than over the whole cell [ d -  1, 1, d] 
of Pa) and that only the cells belonging to B (k ~< d - 2 )  have their boun- 
daries mapped on surfaces that are not always cell boundaries themselves. 

For each cell [ i , j ,  k ]  of P), the determination of cells completely 
covered by its image then enables us to deduce also a maximum number n 

4For  some values of d, Table I includes empty cells (e.g., [1, 3, 2] for d = 3 ) .  This has no 
impact on our conclusions, because the image of an empty set is empty. 

822/'48/5-6-21 * 
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T a b l e  I ~ 

b/l U~/_ 1 /'/~/ Conditions for x = TA u Image cells Number n 

1 d - 1  d - -  - -  A 1 

i d - 1  d xi<<.x~+l - -  [ i , d , d - 1 ]  3 
1 j d - -  x j > ~ x a _ l - 1  [1, j +  1, j ]  3 
i < j d x i < ~ x l + l  x j > / X d _ l - - I  [ i , j , d - - 1 ]  5 
i > j d x i ~ x l + l  Xj>~Xd_I--1 [ i + l , j - l , d - 1 ]  5 

d - 3  2 d Xd_3~xl ' -}- i  X 2 ) X d _ I - - 1  [d--2, 1, d -  1] - -  
d - 2  j d X d _ 2 ~ X l + l  Xj>~Xa_I--1 [ d - - l , j , d ]  - -  
d - 1  j d Xd_ t<~Xl+l  K --- 

i 1 d Xd_I<~XI4-1 1~ - -  
d - I  1 d x d 2~Xlq- 1 X 2 ~ X d _ I - - 1  [d-- 1, 1, d] - -  

1 d d - 1  - -  - -  A 1 

i d d - 1  x~<~xx+f~ - -  [1, d -  1, d] 2 
f d - 2  d - 1  - -  x~ ~>~xj_l-1  t l ,  d -  1, d - 2 ]  2 
i d - 2  d - I  x i < ~ x l + f ~  x a 2 > ~ x a _ l - 1  [1, d -  1, d - 2 ]  2 
1 j d - 1  - -  X~>~Xd_I--1 [1,j, d--2]  4 
i j d - 1  x i < ~ x l + f ~  x~>~xd_ l -1  [1, j, d] 4 
2 1 d - 1  - -  Xl>/Xd_l - -1  R - -  
i 1 d - 1  X j > / X d _ l - - i  R - -  
1 d k - -  - -  A 1 

i d k x i<~xl+f lk  - -  [1, d, d -  1] 2 
1 d - 1  k - -  - -  X 1 

i d - 1  k x i<~xl+f lk  - -  [1, d, d -  1] 2 
1 j k - -  Xj>/Xk--I  [ k , d , d - 1 ]  3 
i j k x i ~ x t + f l k  Xj>~Xk--1 [ k , d , d - 1 ]  3 
2 1 k - -  Xl>/Xk--1 [ k , d , d - 1 ]  3 
i 1 k X k ~ X l + l  [ k , d , d - 1 ]  3 

The first three indices identify each cell of the partition Pd; when unspecified, they take 
values 2 ~< i ~< d - 2, 2 <~ j ~< d-- 2, and 2 ~< k ~< d -  2 with k >/i + 1. The inequalities listed are 
necessary and sufficient conditions on x for finding ue A; the "image cells" list some cells of 
P} satisfying these conditions. The last column lists n such that T3[i, j, k] = A. The partition 
P} differs from Pd only by subdividing [ d -  1, 1, d] into J~ and J~'. 

of i t e ra t ions  such tha t  T3 [i, j ,  k ]  = / 1  (except for the  t r a p p e d  cells m a p p e d  

on ly  o n / ~  or  G), which  comple tes  the p ro o f  of  T h e o r e m  1. 
I t  also appea r s  f rom T a b l e  ! tha t  at  least  d -  1 cells are m a p p e d  over  

the whole  A, a n d  tha t  (as n o t e d  in  Refs. 10 a n d  11) the  image  of a n y  cell 

also covers  K ~. 

APPENDIX  B. TOPOLOGICAL CHAOS A N D  ERGODICITY 
FOR d~<9 

Sta r t ing  f rom T h e o r e m  1 a n d  f rom the d i l a t ing  p r o p e r t y  of the 
m a p p i n g  TA, we es tab l i sh  the s t rong ly  chao t ic  p roper t i es  of T~. 
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Let u~A. For any n~>O, let A,(u) be the cell of Pd to which T3u 
belongs. Since Pd is generating, the sequence (A,(u)), 0 ~<n < oo, uniquely 
determines u; in fact, 

lim F , ( u ) =  {u} (B.1) 
r t ~ o o  

where 

Fn(u)=  ~ T2~dk(u) (B.2) 
k = 0  

The sets F,(u) are closed. Consider now any open set U3u. Because of 
(B.1), there must be an integer m > 0 such that Fm(u ) c U; then, according 
to Theorem 1, 

TT+sU~ 7" 2 ~+s&(u)=3 (B.3) 

As a result, for any open sets U, V c A ,  there is some N > 0  such that, 
Vn > N, T,] U c~ V # Gf. The mixmaster map TA is thus topologically m&ing. 
It is also clear that T A has positive topological entropy hr>~ (1/5)In Na, 
where Nd is the number of cells of Pa with a nonempty interior. (~) 

Consider now a (Lebesgue) measurable set U', with nonzero measure, 
differing from U only by a null set. Then T~+sU ' also differs from ,4 only 
by a null set. Therefore, the only invariant measurable subsets of X are 
either null sets or have a null complement: TA is ergodc. 

In fact, the previous results are much stronger: if the mapping TA 
admits an invariant measure absolutely continuous with respect to the 
Lebesgue measure, the map TA must be exact with respect to this 
measure. ~9'~21 However, this invariant measure is not yet known for 
4~<d~9.  

A P P E N D I X  C. THE M I X M A S T E R  M A P  O U T S I D E  THE 
STABIL ITY  REGION 

In this Appendix, we extend the results of Ref. 12 to the case d>~ 10, 
where the Kasner stability region has a nonempty interior: we prove that 
any point u e A is eventually mapped s into either the inversion region B or 
the Kasner stability region K, and that TA 2 is uniformly expanding over B, 
except near the boundary o f / ( .  Before embarking on the proofs, let us 
define for any u e A (with u ' =  Tu) 

u' ~ u' (C.1) g(u)=max(u'a_~, d -2J -  1 

5 If a point u is mapped into the extended stability region (7, the next iteration of ira maps it 
into ~. 



1280 Elskens 

By continuity, let g ( m ) =  +co. Since u'~<~u'd and u;~< ..- ~<u' d- -  2 ,  w e  s e e  

that u e [ d -  1, j, d] for some j~< d -  2 if and only if g(u) <~ O; in that case, 
TaueR. 

We also introduce 

a(u) = d(u, K)= inf d(u, c ) =  d(u, OR) 
c E K  

(C.2) 

with the distance (2.6). Note that g is a continuous (piecewise linear) 
function of u, vanishing in A only for u e OR; thus, ~o  > 0, Ve e [0, c0], 
3y > 0 such that g(u) > y if a(u) > e. 

Proposi t ion.  VueA, 3neN: T ~ u ~ B u  R. 

Proof. Consider u e A. In view of the previous remarks, we may 
assume that g(T]u)>O for any n > 0 ,  and that uCB. Let x =  TAU. 

As u r B, xd = u} and 

f (x)  = xd - xd_ 1 + 1 = f(u) - g(u) (C.3) 

Thus, f(T3u) decreases as n increases, unless T ~ u e B u R  for some n. 
Therefore, if there is any 7 > 0 such that, VN> 0, 3n > N: g(T~u) > 7, then 
there is some m > 0  such that f (TTTu)< 1, and T'~ueB. It is now suf- 
ficient to consider only the case where ~r(T]u)~ 0 as n ~ oo. Consider the 
cell A,,~P~ to which T~u belongs: for e small enough, An must contain at 
least one point c e 0K. Moreover, A, c A\(B u K), since T,~ u ~ B u K. Then 
T~A,, is a union of similar cells of P~ (see Appendix A), and T~ acts on 
A,,n TA1A,,+I as an isometry. As c =  T2c (since c~R), we find that 
d(T]+ 2u, c)=d(T]u, c), and: 

1. If the boundary OAR c~ OR is (d-- 3)-dimensional, then a(T.] + 2u) -- 
cr(T] u), and a(T'fu ) would not converge to zero for m --, oo (which 
contradicts our previous assumption). 

2. If the boundary OA,,c~SKis r-dimensional ( r < d - 3 ) ,  T'fu cannot 
approach closer to this part of the boundary OR: if a(T~ u) ~ 0 as 
n - ,  ~ ,  the point T] 'u must approach OR through another cell, 
and ultimately OAmnOR through another cell, and ultimately 
OA m ~ O]~ must be ( d -  3)-dimensional. 

Thus, we arrive to a contradiction, and the proof is complete. II 

The preceding argument also indicates that T~ is uniformly expanding 
over B, except near OK: it suffices to reproduce the proof of Ref. 12 
(Theorem 2), replacing only the case ( d =  9, u = c) by (d>~ 9, u e K). 
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APPENDIX D. A VARIANT OF THE MIXMASTER MAP 

To complete our proofs, we introduce an auxiliary mapping TA, and a 
subset C c K so that: 

1. l 'a is continuous over .4 

2, r 4 u  = TAU for any u s A \ K  

3. TA C = A, and TA is one-to-one and differentiable on C 

4. ]'A(K'\int C)=. ,~\ int  K', and ]',~ is one-to-one and differentiable 
on K'\int C 

5. I'A(~2\~A)c~A 

We then define the partition Pa by replacing in Pa the cell [ d -  1, 1, d] by 
three cells K' = G\K, C' = K\C, and C. Any cell of Pd is thus mapped onto 

a finite number of iterations of ]'A- 
We further require that, for any u ~ K, the Jacobian matrix ~?TAU/OU be 

dilating by a factor r >t 1 in all directions, with/~(u) = 1 only if u e c~R. 
With this definition, Pd is generating for ]'A: if two points u, u' E A belong 
to the same cell of P j ,  the mapping TA never reduces their distance; unless 
their trajectories end up in 0/s c~K', the distance d(i~A u, T] u') eventually 
exceeds the diameter of B w K, and the two trajectories must fall in distinct 
cells of Pa- As to the points ending on cell boundaries, they form a subset 
of A with an empty interior and measure zero (~?/~ has dimension d - 3 ,  
and so does TA ~ c~K ~ for any n). 

The fact that any cell of Pd is eventually mapped onto .d, and that Pd 
is generating, enables one to prove that, for any neighborhood V(u) of any 
point u ~ ,4, 3 N >  0 such that ~'N V(U) = A. Therefore, ]'A shares the proper- 
ties that hold for TA in d ~ 9  (see Appendix B); in particular, it is 
topologically mixing and it is ergodic. 

Subsequently, for any point u e A ,  there is a point u'~ A arbitrarily 
close to u, and such that T] u e K for some n: the trajectory of u' under the 
mixmaster map T A ends in the Kasner stability region. Thus, the set 

Q = { u :  lira T~ueK}  
n - -+  o o  

is dense in .4. Moreover, its complement .d \Q has measure zero; indeed, 
] 'A(A\Q)=  T~(_~\Q)= .~\Q: if ,4 \Q had a positive measure, i7" A would 
not be ergodic. 
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